
2025/11/15 02:39 1/16 Инструкция по воспроизведению тестов MLPerf Inference GMNT, MLPerf Inference ResNet, Kaldi

micronode.ru - https://micronode.ru/

Инструкция по воспроизведению тестов
MLPerf Inference GMNT, MLPerf Inference
ResNet, Kaldi

Общие сведения и требования к системе

Для проведения всех этапов тестирования система должна соответствовать следующим
требованиям:

В системе должны быть установлены только графические ускорители NVIDIA TESLA T41.
Пользователь, осуществляющий тестирование, должен иметь возможность повышать2.
привилегии до суперпользователя «root» через «sudo»
Операционная система на базе Ubuntu 18.04 LTS или RHEL 7.3.

Генератор нагрузки

Рекомендуется запускать генератор нагрузки на том же узле, где и проводятся тесты.
Создаваемая им нагрузка на локальном узле меньше, чем вероятные помехи и нагрузка при
запуске на удаленном хосте.

Хорошим критерием является наличие ядер CPU, загруженных менее чем на 20% во время
теста.

Параметры команды «make» в MLPerf тестах

Действия для запуска тестов MLPerf содержат команды автоматизации следующего вида:

make run RUN_ARGS="…"

Данная команда производит компиляцию TensorRT engine и затем запускает генератор
нагрузки и прочие элементы. При необходимости, данные действия можно разбить на два
этапа: компиляция и генератор нагрузки. Далее приведены инструкции, как выполнять
каждый этап раздельно.

Для выполнения этапа компиляции необходимо выполнить следующую команду:

make generate_engines

Для запуска генератора нагрузки при условии, что TensorRT engine уже скомпилированы,
необходимо выполнить следующую команду:

make run_harness

По умолчанию, переменная «RUN_ARGS» содержит параметр, отвечающий за проверку и

Last update: 2022/07/05 09:34 wiki:benchmark:tests:gpu:mlperf https://micronode.ru/wiki/benchmark/tests/gpu/mlperf

https://micronode.ru/ Printed on 2025/11/15 02:39

производительности и скорости:

--test_mode=SubmissionRun

Для измерения производительности следует указать

--test_mode=PerformanceOnly

Для измерения аккуратности следует указать

--test_mode=AccuracyOnly

Первичная настройка системы

Настройка системы на базе Ubuntu 18.04 LTS

Перед началом проведения работ по тестированию необходимо произвести установку
необходимых компонентов и первичную настройку:

Отключаем драйвер «nouveau», согласно инструкции:1.
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#runfile-nouveau-ubuntu

 #runfile-nouveau-ubuntu

Устанавливаем драйвер NVIDIA GPU версии 440 и перезагружаем систему2.

$ sudo add-apt-repository ppa:graphics-drivers/ppa
$ sudo apt-get update
$ sudo apt-get install nvidia-driver-418\\
$ sudo reboot

Устанавливаем «docker» версии 19.03, согласно инструкции:3.
https://docs.docker.com/install/linux/docker-ce/ubuntu/
Устанавливаем «docker-compose» версии 1.25.4, согласно инструкции:4.
https://docs.docker.com/compose/install/#install-compose-on-linux-systems
Устанавливаем пакет «git»5.

 $ sudo apt install -y git

Устанавливаем пакет «nvidia-container-runtime» и перезапускаем службу «docker»6.

$ curl -s -L \
https://nvidia.github.io/nvidia-container-runtime/gpgkey | \
sudo apt-key add –
$ distribution=$(. /etc/os-release;echo IDVERSION_ID)
$ curl -s -L \
https://nvidia.github.io/nvidia-container-runtime/$distribution/nvidia-
container-runtime.list | \
sudo tee /etc/apt/sources.list.d/nvidia-container-runtime.list

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#runfile-nouveau-ubuntu
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/compose/install/#install-compose-on-linux-systems

2025/11/15 02:39 3/16 Инструкция по воспроизведению тестов MLPerf Inference GMNT, MLPerf Inference ResNet, Kaldi

micronode.ru - https://micronode.ru/

$ sudo apt-get update
$ sudo apt install -y nvidia-container-runtime
$ sudo systemctl restart docker

Настройка системы на базе RHEL 7

Перед началом проведения работ по тестированию необходимо произвести установку
необходимых компонентов и первичную настройку:

Устанавливаем драйвер NVIDIA GPU версии 440, согласно инструкции1.
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html#unique_106823779
8
Устанавливаем «docker» версии 19.03, согласно2.
инструкцииhttps://docs.docker.com/install/linux/docker-ce/centos/
Устанавливаем «docker-compose» версии 1.25.4, согласно инструкции:3.
https://docs.docker.com/compose/install/#install-compose-on-linux-systems
Устанавливаем пакет «git»4.

$ sudo yum install -y git

Устанавливаем пакет «nvidia-container-runtime» и перезапускаем службу «docker»5.

$ distribution=$(. /etc/os-release;echo IDVERSION_ID)
$ curl -s -k -L \
https://nvidia.github.io/nvidia-container-runtime/$distribution/nvidia-
container-runtime.repo | \\\
sudo tee /etc/yum.repos.d/nvidia-container-runtime.repo
$ sudo yum install -y nvidia-container-runtime\\
$ sudo systemctl restart docker

Настройки окружения запуска тестов

Для завершения первичной настройки необходимо выполнить следующие шаги:

Устанавливаем по умолчанию в значение «nvidia» docker runtime.1.
Модифицируем файл1.

/etc/docker/daemon.json

{

 "default-runtime":"nvidia",

 "runtimes": {

 "nvidia": {

 "path": "nvidia-container-runtime",

https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html#unique_1068237798
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html#unique_1068237798
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/compose/install/#install-compose-on-linux-systems
https://micronode.ru/_export/code/wiki/benchmark/tests/gpu/mlperf?codeblock=9

Last update: 2022/07/05 09:34 wiki:benchmark:tests:gpu:mlperf https://micronode.ru/wiki/benchmark/tests/gpu/mlperf

https://micronode.ru/ Printed on 2025/11/15 02:39

 "runtimeArgs": []

 }

 }

}

При необходимости изменения места хранения образов docker следует добавить в2.
файл:

 "data-root": "/path/to/docker/images"

После чего сервис «docker» должен быть перезагружен2.

 $ sudo systemctl restart docker

Переводим все GPU в режим «persistent mode» и отключаем ECC в памяти3.

$ sudo systemctl --now enable nvidia-persistenced\\
$ sudo nvidia-smi -e 0\\
$ sudo shutdown -r 0

Устанавливаем максимальные частоты работы GPU и памяти4.
Для получения максимальной частоты памяти1.

$ nvidia-smi -i 0 -q -d SUPPORTED_CLOCKS | grep Memory | head -n 1

Для получения максимальной частоты GPU2.

 $ nvidia-smi -i 0 -q -d SUPPORTED_CLOCKS |grep Graphics |head -n
1

Задаем максимальные частоты3.

 $ sudo nvidia-smi -ac <частота памяти в МГц>,<частота GPU в МГц>

Пример получения и установки частот GPU5.

$ nvidia-smi -i 0 -q -d SUPPORTED_CLOCKS|grep Memory | head -n 1
Memory : 3003 MHz

$ nvidia-smi -i 0 -q -d SUPPORTED_CLOCKS|grep Graphics| head -n 1
Graphics : 1531 MHz

$ sudo nvidia-smi -ac 3003,1531\\
Applications clocks set to "(MEM 3003, SM 1531)" for GPU
00000000:03:00.0
All done.

2025/11/15 02:39 5/16 Инструкция по воспроизведению тестов MLPerf Inference GMNT, MLPerf Inference ResNet, Kaldi

micronode.ru - https://micronode.ru/

Подготовка компонентов для запуска тестов

На данном этапе производятся подготовительные работы по созданию основным компонентов
повторяющихся тестов:

Создаем папку «compose»1.

 $ mkdir -p ~/mlperf_gnmt/compose

В папку «~/mlperf_gnmt/compose» должны быть скачаны все файлы из папки2.
https://drive.google.com/open?id=1WUpUliRw75pBnJ-lmOgnsx_ruPPAgsGU
Переходим в общий каталог теста «mlperf_gnmt»3.

$ cd ~/mlperf_gnmt/

Клонируем основной репозиторий «mlperf inference results»4.

 $ git clone https:%%//%%github.com/mlperf/inference_results_v0.5.git

Заменяем оригинальный Dockerfile5.

$ cp compose/Dockerfile.original.replacement
inference_results_v0.5/closed/NVIDIA/docker/Dockerfile

Переходим в папку6.

 $ cd compose

Произвести сборку docker-образа7.

 $ sudo docker-compose build

При необходимости авторизации следует зарегистрироваться и получить API ключ и1.
следовать инструкции https://ngc.nvidia.com/setup
Если возникают ошибки проверки SSL сертификатов, необходимо добавить в2.
inference_results_v0.5/closed/NVIDIA/docker/Dockerfile следующее:

ENV GIT_SSL_NO_VERIFY\\
RUN echo "check_certificate = off" >> ~/.wgetrc

Проведение тестирования для режима «Offline»

Для воспроизведения тестов в режиме «Offline» рекомендуется использовать эталонную
конфигурацию оборудования с четырьмя, восьмью или двадцатью GPU NVIDIA Tesla T4. Полное
описание систем доступно по ссылкам в таблице:

4 x
Tesla
T4

https://github.com/mlperf/inference_results_v0.5/blob/master/closed/DellEMC/systems/R740_T4x4_tensorrt.json

https://drive.google.com/open?id=1WUpUliRw75pBnJ-lmOgnsx_ruPPAgsGU
https://ngc.nvidia.com/setup
https://github.com/mlperf/inference_results_v0.5/blob/master/closed/DellEMC/systems/R740_T4x4_tensorrt.json

Last update: 2022/07/05 09:34 wiki:benchmark:tests:gpu:mlperf https://micronode.ru/wiki/benchmark/tests/gpu/mlperf

https://micronode.ru/ Printed on 2025/11/15 02:39

8 x
Tesla
T4

https://github.com/mlperf/inference_results_v0.5/blob/master/closed/NVIDIA/systems/T4x8.json

20 x
Tesla
T4

https://github.com/mlperf/inference_results_v0.5/blob/master/closed/NVIDIA/systems/T4x20.json

Эталонные результаты теста MLPerf Inference для систем выше приведены в следующей
таблице (полная таблица доступна по ссылке: https://mlperf.org/inference-results/)

ResNet GNMT
4 x Tesla T4 22438.00 1417.62
8 x Tesla T4 44977.80 2834.75
20 x Tesla T4 113592.00 7154.88

Для определения удельных результатов системы на одном GPU, в следующей таблице
приведены результаты тестов, разделённые на количество GPU:

ResNet GNMT
4 x Tesla T4 5609.50 354.41
8 x Tesla T4 5622.23 354.34
20 x Tesla T4 5679.60 357.74

Таким образом наблюдается почти линейное масштабирование результатов бенчмарка с
количеством GPU. Аппаратные отличия тестируемых конфигураций, от конфигураций выше,
могут приводить к снижению производительности до 30%.

По завершению каждого теста необходимо остановить контейнер, иcпользуя следующие
действия:

Переключиться в терминал, где запущена следующая команда1.

 $ sudo docker-compose up

Прервать её исполнение нажав сочетание клавиш «CTRL+C»2.
Остановить контейнер, используя следующую команду3.

$ sudo docker-compose down

Тест «MLPerf Inference GNMT»

Для проведения теста «MLPerf Inference GNMT» в режиме «Offline» следует выполнить
следующие действия:

Запускаем docker-образ1.

 $ sudo docker-compose up

Открываем дополнительный терминал и переходим в папку2.

 «~/mlperf_gnmt/compose».

https://github.com/mlperf/inference_results_v0.5/blob/master/closed/NVIDIA/systems/T4x8.json
https://github.com/mlperf/inference_results_v0.5/blob/master/closed/NVIDIA/systems/T4x20.json
https://mlperf.org/inference-results/

2025/11/15 02:39 7/16 Инструкция по воспроизведению тестов MLPerf Inference GMNT, MLPerf Inference ResNet, Kaldi

micronode.ru - https://micronode.ru/

$ cd ~/mlperf_gnmt/compose

Подключаемся к контейнеру3.

 $ sudo docker-compose exec mlperf-gnmt /bin/bash

Скачиваем датасет, используя готовый скрипт4.

$./download_dataset.sh

Производим запуск теста5.

 make run RUN_ARGS="--benchmarks=gnmt --scenarios=Offline --
test_mode=SubmissionRun"

По окончанию тестирования будет выдан результат исполнения. В качестве единицы
измерения принимается показатель «количество сэмплов в секунду». Будет выведено
сообщение о статусе тестирования на точность.

По завершению всех операций останавливаем контейнер, как указано в разделе Проведение
тестирования для режима «Offline».

Тест «MLPerf Inference ResNet»

Для проведения теста «MLPerf Inference ResNet» в режиме «Offline» следует выполнить
следующие действия:

Создаём папку /tmp/preprocessed_data1.

$ mkdir -p /tmp/preprocessed_data

Перед проведением тестирования система преобразует датасет в другой формат.1.
Эта папка будет использоваться для хранения датасета в преобразованном
формате. Убедитесь, что на диске, где хранится эта папка есть 20 ГБ свободного
места.

Скопируем файлы с ILSVRC2012_val_00000001.JPEG по2.
ILSVRC2012_val_00050000.JPEG из валидационного датасета «Imagenet 2012» в папку
/mnt/hdd/datasets/imagenet.

Получить файлы можно, пройдя регистрацию и получив одобрение от авторов1.
датасета, по адресу: http://image-net.org/download-images

Переходим в общий каталог теста «~/mlperf_gnmt/compose»3.

 $ cd ~/mlperf_gnmt/compose

Открываем файл «docker-compose.yml» любым удобным редактором4.
Добавляем в раздел «volumes» следующие разделы5.

- /tmp/preprocessed_data:/work/build/preprocessed_data
- "/mnt/hdd/datasets/imagenet:/work/build/data/imagenet"

Сохраняем и закрываем файл.6.

http://image-net.org/download-images

Last update: 2022/07/05 09:34 wiki:benchmark:tests:gpu:mlperf https://micronode.ru/wiki/benchmark/tests/gpu/mlperf

https://micronode.ru/ Printed on 2025/11/15 02:39

Запускаем docker-образ7.

 $ sudo docker-compose up

Открываем дополнительный терминал и переходим в папку «~/mlperf_gnmt/compose».8.

 $ cd ~/mlperf_gnmt/compose

Подключаемся к контейнеру9.

$ sudo docker-compose exec mlperf-gnmt /bin/bash

Переходим в папку «/work» внутри контейнера10.

 $ cd /work

Производим подготовку данных для проведения тестирования11.

 $ python3 scripts/preprocess_data.py
-d build/data -o build/preprocessed_data \
-b resnet --val_only -t fp32
$ python3 scripts/preprocess_data.py \
-d build/data -o build/preprocessed_data \
-b resnet --val_only

Производим запуск теста12.

 $ make run RUN_ARGS="--benchmarks=resnet --scenarios=Offline --
test_mode=SubmissionRun "

По окончанию тестирования будет выдан результат исполнения. В качестве единицы
измерения принимается показатель «количество сэмплов в секунду». Будет выведено
сообщение о статусе тестирования на точность.

По завершению всех операций останавливаем контейнер, как указано в разделе Проведение
тестирования для режима «Offline».

Проведение тестирования для режима «Server»

Для воспроизведения тестов в режиме «Server» рекомендуется использовать эталонную
конфигурацию с четырьмя, восьмью или двадцатью GPU NVIDIA Tesla T4. Полное описание
систем доступно по ссылкам в таблице:

4 x
Tesla
T4

https://github.com/mlperf/inference_results_v0.5/blob/master/closed/DellEMC/systems/R740_T4x4_tensorrt.json

8 x
Tesla
T4

https://github.com/mlperf/inference_results_v0.5/blob/master/closed/NVIDIA/systems/T4x8.json

20 x
Tesla
T4

https://github.com/mlperf/inference_results_v0.5/blob/master/closed/NVIDIA/systems/T4x20.json

https://github.com/mlperf/inference_results_v0.5/blob/master/closed/DellEMC/systems/R740_T4x4_tensorrt.json
https://github.com/mlperf/inference_results_v0.5/blob/master/closed/NVIDIA/systems/T4x8.json
https://github.com/mlperf/inference_results_v0.5/blob/master/closed/NVIDIA/systems/T4x20.json

2025/11/15 02:39 9/16 Инструкция по воспроизведению тестов MLPerf Inference GMNT, MLPerf Inference ResNet, Kaldi

micronode.ru - https://micronode.ru/

Эталонные результаты теста MLPerf Inference для систем выше приведены в следующей
таблице (полная таблица доступна по ссылке: https://mlperf.org/inference-results/)

ResNet GNMT
4 x Tesla T4 20742.83 828.57
8 x Tesla T4 41546.64 1581.20
20 x Tesla T4 103532.10 3776.07

Для определения удельных результатов системы на одном GPU, в следующей таблице
приведены результаты тестов, разделённые на количество GPU:

ResNet GNMT
4 x Tesla T4 5185.71 207.14
8 x Tesla T4 5193.33 197.65
20 x Tesla T4 5176.61 188.80

Таблица 1. Удельные показатели системы на одном GPU

Таким образом наблюдается почти линейное масштабирование результатов бенчмарка с
количеством GPU. Аппаратные отличия тестируемых конфигураций, от конфигураций выше,
могут приводить к снижению производительности до 30%.

По завершению каждого теста необходимо остановить контейнер, иcпользуя следующие
действия:

Переключиться в терминал, где запущена следующая команда1.

 $ sudo docker-compose up

Прервать её исполнение нажав сочетание клавиш «CTRL+C»2.
Остановить контейнер, используя следующую команду3.

 $ sudo docker-compose down

Валидность результатов тестирования в режиме «Server»

Тестирование в режиме «Server» подразумевает, что результаты валидны только если от
постановки каждого сэмпла в очередь до поучения ответа проходило бы меньше времени, чем
заданное пороговое значение, которое можно найти в таблице

https://github.com/mlperf/inference_policies/blob/master/inference_rules.adoc#41-benchmarks

Основные параметры, влияющие на прохождение теста системой, описаны в данной секции,
Таблица 2. Файл gnmt/Server/config.json и Таблица 4. Файл resnet/Server/config.json.
Дополнительные параметры также могут иметь влияние на производительность и на
валидность бенчмарка. Более подробное описание влияния параметров на
производительность и валидность теста, и алгоритм подбора оптимальных содержатся в
документе
https://github.com/mlperf/inference_results_v0.5/blob/master/closed/NVIDIA/performance_tuning_guid

https://mlperf.org/inference-results/
https://github.com/mlperf/inference_policies/blob/master/inference_rules.adoc#41-benchmarks
https://github.com/mlperf/inference_results_v0.5/blob/master/closed/NVIDIA/performance_tuning_guide.adoc

Last update: 2022/07/05 09:34 wiki:benchmark:tests:gpu:mlperf https://micronode.ru/wiki/benchmark/tests/gpu/mlperf

https://micronode.ru/ Printed on 2025/11/15 02:39

e.adoc

Валидность результатов обозначается словом «VALID» в выводе, невалидность словом
«INVALID». Для получения валидных результатов необходимо задать подходящие для
системы параметры тестирования.

Основной параметр, влияющий на валидность результатов — «server_target_qps», целевое
количество запросов в секунду, которое будет отсылать генератор нагрузки. Частично код,
который уточняет это значение с помощью бинарного поиска инкорпорирован в сам генератор
нагрузки LoadGen1), однако результаты теста зависят от исходного значения.

Получение валидных результатов не гарантирует, что получены максимальные возможные
результаты тестирования, так как они зависят от многих параметров, указанных в
конфигурационных файлах, и при некоторых комбинациях могут быть валидными, но
заниженными. Заниженными считаются результаты, при которых можно увеличить значение
«server_target_qps» на 5% и подобрать такую конфигурацию параметров, что пять запусков
теста подряд выдадут валидные результаты.

Тест «MLPerf Inference GNMT»

Выполняем действия 1-10 секции Тест «MLPerf Inference GNMT» в части Проведение1.
тестирования для режима «Offline».
Запускаем тест командой2.

 make run RUN_ARGS="--benchmarks=gnmt --scenarios=Server --
test_mode=SubmissionRun "

По окончанию тестирования будет выдан результат исполнения. В качестве3.
единицы измерения принимается показатель «количество сэмплов в секунду».
Будет выведено сообщение о том, успешно ли система прошла тест на точность и
сообщение, валидны результаты или невалидны.

Если результаты невалидны, изменим параметр «server_target_qps» и иные параметры в
конфигурационных файлах. Основные параметры, влияющие на результат описаны в таблицах
ниже.

Параметр Ключ Описание

server_target_qps gnmt →
server_target_qps

Целевое значение количества обрабатываемых
семплов в секунду. Если указано слишком большое
значение, не все запросы будут вовремя выполнены и
результат тестирования окажется невалидным. Если
указано слишком маленькое значение, результат
тестирования будет валиден, но занижен.
Изначальное значение рекомендуется выбирать по
Таблица 1. Удельные показатели системы на
одном GPU. Частично код, который уточняет это
значение с помощью бинарного поиска
инкорпорирован в сам генератор нагрузки LoadGen2),
однако результаты теста зависят от исходного
значения.

https://github.com/mlperf/inference_results_v0.5/blob/master/closed/NVIDIA/performance_tuning_guide.adoc

2025/11/15 02:39 11/16 Инструкция по воспроизведению тестов MLPerf Inference GMNT, MLPerf Inference ResNet, Kaldi

micronode.ru - https://micronode.ru/

Параметр Ключ Описание

batch_sizes gnmt → batch_sizes
Количество сэмплов, которые собираются в один батч
для отправки на GPU. Могут компилироваться
несколько возможных batch_size одновременно.

concurrency gnmt → concurrency Количество одновременно исполняющихся на GPU
батчей инференса.

precision gnmt → precision Аппаратная точность вычислений.

Таблица 2. Файл gnmt/Server/config.json

Параметр Ключ Описание

server_target_qps *.Server.target_qps
Значение необходимо устанавливать в точноcти
равным значению в файле
gnmt/Server/config.json. Смотри Таблица 2. Файл
gnmt/Server/config.json

Остальные параметры Заданы правилами MLPerf и не подлежат
изменению.

Таблица 3. Файл gnmt/Server/user.conf

Для редактирования файлов:

Открываем дополнительный терминал и переходим в папку «~/mlperf_gnmt/compose».1.

 $ cd ~/mlperf_gnmt/compose

Подключаемся к контейнеру2.

 $ sudo docker-compose exec mlperf-gnmt /bin/bash

Открываем на редактирование json-файл любым удобным редактором3.
/work/measurements/T4x8/gnmt/Server/config.json
Изменяем параметры согласно Таблица 2. Файл gnmt/Server/config.json.4.
Сохраняем и закрываем файл.5.
Открываем на редактирование conf-файл любым удобным редактором6.
“/work/measurements/T4x8/gnmt/Server/user.conf”
Изменяем параметры согласно Таблица 3. Файл gnmt/Server/user.conf.7.
Сохраняем и закрываем файл.8.
- Изменение иных параметров в этих конфигурационных файлах тоже влияет на9.
результаты теста. Для более тонкой настройки необходимо обратиться к документации
теста MLPerf Inference, указанной в Валидность результатов тестирования в режиме
«Server».
Перезапустим тест командой из пункта 1. Если результаты теста всё ещё невалидны,10.
повторим процедуру 1 - 10.
Если результаты валидны, проверим, что они не занижены:11.

Увеличим значение «server_target_qps» на 5% в конфигурационных файлах.1.
Запустим тест пять раз подряд как в пункте 1 и посмотрим, выдала ли система хотя2.
бы раз невалидные результаты.
Если система выдала валидные результаты все пять раз, предыдущие результаты3.
были занижены. Повторим пункты 1 - 11.
Если система выдала невалидные результаты хотя бы один раз, изменим4.
параметры, зафиксировав «server_target_qps» согласно пунктам 4 - 9 и повторим

Last update: 2022/07/05 09:34 wiki:benchmark:tests:gpu:mlperf https://micronode.ru/wiki/benchmark/tests/gpu/mlperf

https://micronode.ru/ Printed on 2025/11/15 02:39

действия из пункта 11 b

Тест «MLPerf Inference ResNet»

Выполняем все действия 4 из секции Тест «MLPerf Inference ResNet» в части1.
Проведение тестирования для режима «Offline».
После этого необходимо запустить тест командой2.

make run RUN_ARGS="--benchmarks=resnet --scenarios=Server --
test_mode=SubmissionRun "

По окончанию тестирования будет выдан результат исполнения. В качестве единицы
измерения принимается показатель «количество сэмплов в секунду». Будет выведено
сообщение о том, успешно ли система прошла тест на точность и сообщение, валидны
результаты или невалидны.

Если результаты невалидны, изменим параметр «server_target_qps» и иные параметры в
конфигурационных файлах. Основные параметры, влияющие на результат описаны в таблицах
ниже.

Параметр Ключи Описание

server_target_qps resnet →
server_target_qps

Целевое значение количества обрабатываемых
семплов в секунду. Если указано слишком
большое значение, не все запросы будут вовремя
выполнены и результат тестирования окажется
невалидным. Если указано слишком маленькое
значение, результат тестирования будет валиден,
но занижен. Изначальное значение
рекомендуется выбирать по Таблица 1.
Удельные показатели системы на одном GPU.
Частично код, который уточняет это значение с
помощью бинарного поиска инкорпорирован в
сам генератор нагрузки LoadGen3), однако
результаты теста зависят от исходного значения.

deque_timeout_us resnet →
deque_timeout_us

Только для бенчмарка resnet. Число миллисекунд,
после которого на GPU в любом случае
отправляется батч, даже если он ещё не
заполнился запросами целиком

gpu_batch_size resnet →
gpu_batch_size

Количество сэмплов, которые собираются в один
батч для отправки на GPU.

gpu_inference
_streams

resnet →
gpu_inference
_streams

Количество одновременно исполняющихся на GPU
батчей инференса.

Таблица 4. Файл resnet/Server/config.json

Параметр Ключ Описание

server_target_qps *.Server.target_qps
Значение необходимо устанавливать в точноcти
равным значению в файле
resnet/Server/config.json. Смотри Таблица 4.
Файл resnet/Server/config.json

2025/11/15 02:39 13/16 Инструкция по воспроизведению тестов MLPerf Inference GMNT, MLPerf Inference ResNet, Kaldi

micronode.ru - https://micronode.ru/

Параметр Ключ Описание

Остальные параметры Заданы правилами MLPerf и не подлежат
изменению.

Таблица 5. Файл resnet/Server/user.conf

Для редактирования файлов:

Открываем дополнительный терминал и переходим в папку «~/mlperf_gnmt/compose».1.

 $ cd ~/mlperf_gnmt/compose

Подключаемся к контейнеру2.

 $ sudo docker-compose exec mlperf-gnmt /bin/bash

Открываем на редактирование json-файл любым удобным редактором3.
/work/measurements/T4x8/resnet/Server/config.json
Изменяем параметры согласно Таблица 4. Файл resnet/Server/config.json.4.
Сохраняем и закрываем файл.5.
Открываем на редактирование conf-файл любым удобным редактором6.
/work/measurements/T4x8/resnet/Server/user.conf
Изменяем параметры согласно Таблица 5. Файл resnet/Server/user.conf.7.
Сохраняем и закрываем файл.8.
Изменение иных параметров в этих конфигурационных файлах тоже влияет на9.
результаты теста. Для более тонкой настройки необходимо обратиться к документации
теста MLPerf Inference, указанной в Валидность результатов тестирования в режиме
«Server».
Перезапустим тест командой из пункта 1. Если результаты теста всё ещё невалидны,10.
повторим процедуру 1 - 10.
Если результаты валидны, проверим, что они не занижены:11.

Увеличим значение «server_target_qps» на 5% в конфигурационных файлах.1.
Запустим тест пять раз подряд как в пункте 1 и посмотрим, выдала ли система хотя2.
бы раз невалидные результаты.

Если система выдала валидные результаты все пять раз, предыдущие1.
результаты были занижены. Повторим пункты 1 - 11.
Если система выдала невалидные результаты хотя бы один раз, изменим2.
параметры, зафиксировав «server_target_qps» согласно пунктам 4 - 9 и
повторим действия из пункта 11 b

Тест «Kaldi»

Для выполнения теста «Kaldi» необходимо проделать следующие действия:

Запустить контейнер из репозитория NGC на локальном узле1.

 $ docker run --gpus all -it --ipc=host --name kaldi
nvcr.io/nvidia/kaldi:20.03-py3

После успешного скачивания и запуска образа автоматически пользователь попадет2.
внутрь контейнера

Last update: 2022/07/05 09:34 wiki:benchmark:tests:gpu:mlperf https://micronode.ru/wiki/benchmark/tests/gpu/mlperf

https://micronode.ru/ Printed on 2025/11/15 02:39

Следует перейти в рабочую директорию теста3.

 $ cd /workspace/nvidia-examples/librispeech/

Необходимо выполнить скрипт предварительной подготовки «prepare.sh»4.

$./prepare.sh

Для запуска теста необходимо выполнить одну из следующих команд:1.
Если используется один графический процессор в сервере1.

 $./run_benchmark.sh

Если используется несколько графических процессоров в сервере2.

 $./run_multigpu_benchmark.sh

По окончанию тестирования будет выдан результат тестирования в режиме полной
загрузки. В качестве единицы измерения пропускной способности принимается
показатель «ускорение относительно реального времени» (RTF, Real Time Factor),
который измеряет отношение между длительностью всех распознанных во время
бенчмарка фраз и временем, затраченным на их распознавание. В качестве единицы
измерения точности применяется WER (Word Error Rate) — среднее нормированное
расстояние Левенштейна в словах между сказанными и предсказанными фразами.
Будет выведено сообщение о том, успешно ли система прошла тест на точность и
сообщение, валидны результаты или невалидны.

Проведём в том же контейнере тест «Kaldi» в онлайн сценарии, когда на сервер генерируется
динамическая нагрузка и измеряется не только пропускная способность, но и задержки.
Результаты теста зависят от параметра «ONLINE_NUM_PARALLEL_STREAMING_CHANNELS» —
целое число, количество одновременно транслируемых на сервер каналов. Значение этого
параметра необходимо вычислить по формуле

 числоканалов > floor(RTF \ast 0.8)$**,**

где RTF ускорение относительно реального времени, измеренное в пункте 5.

Для запуска теста необходимо выполнить одну из следующих команд:1.
Если используется один графический процессор в сервере1.

 $ ONLINE=1 ONLINE_NUM_PARALLEL_STREAMING_CHANNELS=<число каналов> \
./run_benchmark.sh

Если используется несколько графических процессоров в сервере2.

 $ ONLINE=1 ONLINE_NUM_PARALLEL_STREAMING_CHANNELS=<число каналов> \
./run_multigpu_benchmark.sh

По окончанию тестирования будет выдан результат исполнения. В качестве единицы
измерения задержки принимается показатель «95-й перцентиль задержки» (Latency @
95%), который измеряет время между отправкой фрагмента на распознавание и

2025/11/15 02:39 15/16 Инструкция по воспроизведению тестов MLPerf Inference GMNT, MLPerf Inference ResNet, Kaldi

micronode.ru - https://micronode.ru/

получением распознанного фрагмента в секундах при количестве запросов,
установленном на 80% от пропускной способности в режиме полной загрузки. Будет
выведено сообщение о том, успешно ли система прошла тест на точность и
сообщение, валидны результаты или невалидны.

Дополнительная информация

Мониторинг

Для получения наилучших результатов тестов рекомендуется проводить измерения без
использования мониторинга.

При необходимости получения данных по мониторингу, рекомендуется производить запуск
тестов в два прохода: с включенным мониторингом и без него.

Рекомендуется использовать DCGM для наблюдения за GPU. Документация с описанием
процесса установки доступна по ссылке (скачать данный пакет можно по адресу:
https://developer.nvidia.com/dcgm):
https://docs.nvidia.com/datacenter/dcgm/latest/dcgm-user-guide/getting-started.html#installation

Для получения результатов мониторинга в формате Prometheus, рекомендуется использовать
следующий репозиторий и код:
https://github.com/NVIDIA/gpu-monitoring-tools/tree/master/dcgm-exporter

Система мониторинга Zabbix версии 4.2 и выше поддерживает сбор данных в формате
Prometheus:
https://www.zabbix.com/documentation/4.2/manual/config/i"tems/itemtypes/prometheus

Сбор метрических данных можно осуществлять при помощи утилиты «nvidia-smi» . Пример
команды сбора различных метрик раз в секунду в csv файл ~/mlperf_gnmt/nvidia-smi-metrics.csv
приведен ниже:

 nvidia-smi \--query-
gpu=timestamp,name,pci.bus_id,driver_version,pstate,pcie.link.gen.max,pcie.l
ink.gen.current,temperature.gpu,power.draw,power.limit,utilization.gpu,utili
zation.memory,memory.total,memory.free,memory.used --format=csv -l 1 | \

tee -a ~/mlperf_gnmt/nvidia-smi-metrics.csv

Интерактивный вариант отображения метрических данных можно производить следующей
командой:

nvidia-smi dmon

Copyright: НИИ МАСШТАБ

https://developer.nvidia.com/dcgm
https://docs.nvidia.com/datacenter/dcgm/latest/dcgm-user-guide/getting-started.html#installation
https://github.com/NVIDIA/gpu-monitoring-tools/tree/master/dcgm-exporter
https://www.zabbix.com/documentation/4.2/manual/config/i%22tems/itemtypes/prometheus
https://mashtab.org/

Last update: 2022/07/05 09:34 wiki:benchmark:tests:gpu:mlperf https://micronode.ru/wiki/benchmark/tests/gpu/mlperf

https://micronode.ru/ Printed on 2025/11/15 02:39

1) , 2) , 3)

https://github.com/mlperf/inference_policies/blob/master/inference_rules.adoc#51-loadgen-operation,
пункт Server

From:
https://micronode.ru/ - micronode.ru

Permanent link:
https://micronode.ru/wiki/benchmark/tests/gpu/mlperf

Last update: 2022/07/05 09:34

https://github.com/mlperf/inference_policies/blob/master/inference_rules.adoc#51-loadgen-operation
https://micronode.ru/
https://micronode.ru/wiki/benchmark/tests/gpu/mlperf

	Инструкция по воспроизведению тестов MLPerf Inference GMNT, MLPerf Inference ResNet, Kaldi
	Общие сведения и требования к системе
	Генератор нагрузки
	Параметры команды «make» в MLPerf тестах

	Первичная настройка системы
	Настройка системы на базе Ubuntu 18.04 LTS
	Настройка системы на базе RHEL 7
	Настройки окружения запуска тестов
	Подготовка компонентов для запуска тестов

	Проведение тестирования для режима «Offline»
	Тест «MLPerf Inference GNMT»
	Тест «MLPerf Inference ResNet»

	Проведение тестирования для режима «Server»
	Валидность результатов тестирования в режиме «Server»
	Тест «MLPerf Inference GNMT»
	Тест «MLPerf Inference ResNet»

	Тест «Kaldi»
	Дополнительная информация
	Мониторинг

